Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Biosens Bioelectron ; 237: 115456, 2023 Jun 13.
Article in English | MEDLINE | ID: covidwho-20239025

ABSTRACT

Recombinase polymerase amplification (RPA) running at 37-42 °C is fast, efficient and less-implemented; however, the existing technologies of nucleic acid testing based on RPA have some limitations in specificity of single-base recognition and multiplexing capability. Herein, we report a highly specific and multiplex RPA-based nucleic acid detection platform by combining flap endonuclease 1 (FEN1)-catalysed invasive reactions with RPA, termed as FEN1-aided RPA (FARPA). The optimal conditions enable RPA and FEN1-based fluorescence detection to occur automatically and sequentially within a 25-min turnaround time and FARPA exhibits sensitivity to 5 target molecules. Due to the ability of invasive reactions in discriminating single-base variation, this one-pot FARPA is much more specific than the Exo probe-based or CRISPR-based RPA methods. Using a universal primer pair derived from tags in reverse transcription primers, multiplex FARPA was successfully demonstrated by the 3-plex assay for the detection of SARS-CoV-2 pathogen (the ORF1ab, the N gene, and the human RNase P gene as the internal control), the 2-plex assay for the discrimination of SARS-CoV-2 wild-type from variants (Alpha, Beta, Epsilon, Delta, or Omicrons), and the 4-plex assay for the screening of arboviruses (zika virus, tick-borne encephalitis virus, yellow fever virus, and chikungunya virus). We have validated multiplex FARPA with 103 nasopharyngeal swabs for SARS-CoV-2 detection. The results showed a 100% agreement with RT-qPCR assays. Moreover, a hand-held FARPA analyser was constructed for the visualized FARPA due to the switch-like endpoint read-out. This FARPA is very suitable for pathogen screening and discrimination of viral variants, greatly facilitating point-of-care diagnostics.

2.
VirusDisease ; 34(1):149, 2023.
Article in English | EMBASE | ID: covidwho-2312993

ABSTRACT

The field-deployable point-of-care diagnostic test for rapid detection of SARS-COV-2 is needed for implementation of the control measures. In this direction, recently developed CRISPR technology combined with isothermal recombinase polymerase amplification assay is a versatile highly sensitive detection platform for rapid diagnosis of infectious diseases. Here we report the development of RT-RPA-CRISPR based LFA assay for detection of SARS-CoV-2 targeting conserved RdRp and E genes. Various sets of primers and gRNAs were designed targeting conserved regions of the RdRp and E genes of different lineages of SARS-CoV-2 viruses. The isothermal RT-RPA based amplification reactions were standardized using invitro transcribed RNAs of the target regions. The optimum amplification was observed at 42degreeC for 30 min as confirmed by visualization of the amplicons in agarose gel. Subsequently, CRISPRCAS12 reaction was implemented for specific detection of amplicons. Different sets of gRNAs targeting RdRp and E genes were designed and synthesized by in-vitro transcription. The CRISP/CAS12-gRNA complex and single stranded fluorescence probe were added to the RT-RPA amplicons for cleavage of fluorescence probe in positive reaction. Subsequently, the cleaved probes were detected in precoated LFA strips. Upon probe cleavage reaction, the product was mixed with buffer and loaded into LFA strips. In positive reaction, test line showed strong band in test line and light band in control line. The standardized RT-RPA-CRISPR-LFA assay was tested for detection of SARS-CoV-2 using previously isolated RNAs from clinical cases of human SARS-CoV-2 infections. The developed assay successfully detected the positive cases. In conclusion, the developed assay could serve as versatile POC platform for rapid detection of SARS-CoV-2 nucleic acids in human as well as animals.

3.
TrAC - Trends in Analytical Chemistry ; 162 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2299695

ABSTRACT

In addition to its remarkable genome editing capability, the CRISPR-Cas system has proven to be very effective in many fields of application, including the biosensing of pathogenic infections, mutagenic defects, or early cancer diagnosis. Thanks to their many advantages in terms of simplicity, efficiency, and reduced time, several CRISPR-Cas systems have been described for the design of sensitive and selective analytical tools, paving the way for the development and further commercialization of next-generation diagnostics. However, CRISPR-Cas-based biosensors still need further research efforts to improve some drawbacks, such as the need for target amplification, low reproducibility, and lack of knowledge of exploited element robustness. This review aims to describe the latest trends in the design of CRISPR-Cas biosensing technologies to better highlight the insights of their advantages and to point out the limitations that still need to be overcome for their future market entry as medical diagnostics.Copyright © 2023 Elsevier B.V.

4.
Biosens Bioelectron ; 222: 114989, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2306553

ABSTRACT

For point-of-care testing (POCT), coupling isothermal nucleic acid amplification schemes (e.g., recombinase polymerase amplification, RPA) with lateral flow assay (LFA) readout is an ideal platform, since such integration offers both high sensitivity and deployability. However, isothermal schemes typically suffers from non-specific amplification, which is difficult to be differentiated by LFA and thus results in false-positives. Here, we proposed an accurate POCT platform by specific recognition of target amplicons with peptide nucleic acid (PNA, assisted by T7 Exonuclease), which could be directly plugged into the existing RPA kits and commercial LFA test strips. With SARS-CoV-2 as the model, the proposed method (RPA-TeaPNA-LFA) efficiently eliminated the false-positives, exhibiting a lowest detection concentration of 6.7 copies/µL of RNA and 90 copies/µL of virus. Using dual-gene (orf1ab and N genes of SARS-CoV-2) as the targets, RPA-TeaPNA-LFA offered a high specificity (100%) and sensitivity (RT-PCR Ct < 31, 100%; Ct < 40, 71.4%), and is valuable for on-site screening or self-testing during isolation. In addition, the dual test lines in the test strips were successfully explored for simultaneous detection of SARS-CoV-2 and H1N1, showing great potential in response to future pathogen-based pandemics.


Subject(s)
Biosensing Techniques , COVID-19 , Influenza A Virus, H1N1 Subtype , Nucleic Acids , Humans , Influenza A Virus, H1N1 Subtype/genetics , SARS-CoV-2/genetics , COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , Point-of-Care Testing , Sensitivity and Specificity , Recombinases/genetics
5.
Pathogens ; 10(10)2021 Sep 25.
Article in English | MEDLINE | ID: covidwho-2266812

ABSTRACT

Feline coronavirus (FCoV) is endemic in cat populations worldwide. Persistently, subclinically infected cats play a significant role in spreading the infection. Testing fecal samples of cats may facilitate efforts to decrease the viral burden within a population. Real-time RT-PCR is highly sensitive and specific for the detection of FCoV but must be performed in a fully equipped laboratory. A simple and accurate assay is needed to identify FCoV at the point-of-need. The aim of this study was to develop a rapid FCoV detection assay based on isothermal amplification technology, i.e., reverse transcription-recombinase polymerase amplification (RT-RPA). Primers were designed to target the highly conserved 3' untranslated region of the 7b gene. Running on a constant temperature of 42 °C, reverse transcription as well as DNA amplification and detection was achieved in a maximum of 15 min. A probit analysis revealed a detection limit of 58.5 RNA copies/reaction. For cross-detection, nucleic acids from 19 viruses were tested. Both RT-RPA and real-time RT-PCR showed cross-detection with canine coronavirus and transmissible gastroenteritis virus, but not with other pathogens. To evaluate clinical performance, RNA was extracted from 39 fecal samples from cats. All samples were tested simultaneously with real-time RT-PCR resulting in a RT-RPA sensitivity and specificity of 90.9% and 100%, respectively. RT-RPA can be considered a promising simple method for rapid detection of FCoV.

6.
Microorganisms ; 11(2)2023 Feb 02.
Article in English | MEDLINE | ID: covidwho-2251473

ABSTRACT

Waterborne diseases are known as a leading cause of illness and death in both developing and developed countries. Several pathogens can be present in contaminated water, particularly waters containing faecal material; however, routine monitoring of all pathogens is not currently possible. Enterococcus faecalis, which is present in the microflora of human and animals has been used as a faecal indicator in water due to its abundance in surface water and soil. Accurate and fast detection methods are critical for the effective monitoring of E. faecalis in the environment. Although conventional and current molecular detection techniques provide sufficient sensitivity, specificity and throughput, their use is hampered by the long waiting period (1-6 days) to obtain results, the need for expensive laboratory equipment, skilled personnel, and cold-chain storage. Therefore, this study aimed to develop a detection system for E. faecalis that would be simple, rapid, and low-cost, using an isothermal DNA amplification assay called recombinase polymerase amplification (RPA), integrated with a lateral flow assay (LFA). The assay was found to be 100% selective for E. faecalis and capable of detecting rates as low as 2.8 × 103 cells per 100 mL from water and wastewater, and 2.8 × 104 cells per 100 mL from saline water. The assay was completed in approximately 30 min using one constant temperature (38 °C). In addition, this study demonstrated the quantitation of E. faecalis using a lateral flow strip reader for the first time, enhancing the potential use of RPA assay for the enumeration of E. faecalis in wastewater and heavily contaminated environmental waters, surface water, and wastewater. However, the sensitivity of the RPA-LFA assay for the detection of E. faecalis in tap water, saline water and in wastewater was 10-1000 times lower than that of the Enterolert-E test, depending on the water quality. Nevertheless, with further improvements, this low-cost RPA-LFA may be suitable to be used at the point-of-need (PON) if conjugated with a rapid field-deployable DNA extraction method.

7.
Biosens Bioelectron ; 217: 114739, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2271903

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has created a huge demand for sensitive and rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The current gold standard for SARS-CoV-2 detection is reverse transcription-polymerase chain reaction (RT-PCR)-based nucleic acid amplification. However, RT-PCR is time consuming and requires specialists and large instruments that are unattainable for point-of-care testing (POCT). To develop POCT for SARS-CoV-2, we combined recombinase polymerase amplification (RPA) and FeS2 nanozyme strips to achieve facile nucleic acid amplification and subsequent colorimetric signal enhancement based on the high peroxidase-like activity of the FeS2 nanozymes. This method showed a nucleic acid limit of detection (LOD) for SARS-CoV-2 of 200 copies/mL, close to that of RT-PCR. The unique catalytic properties of the FeS2 nanozymes enabled the nanozyme-strip to amplify colorimetric signals via the nontoxic 3,3',5,5'-tetramethylbenzidine (TMB) substrate. Importantly, the detection of clinical samples of human papilloma virus type 16 (HPV-16) showed 100% agreement with previous RT-PCR results, highlighting the versatility and reliability of this method. Our findings suggest that nanozyme-based nucleic acid detection has great potential in the development of POCT diagnosis for COVID-19 and other viral infections.


Subject(s)
Biosensing Techniques , COVID-19 , Nucleic Acids , COVID-19/diagnosis , Humans , Nucleic Acid Amplification Techniques/methods , Peroxidases , RNA, Viral/analysis , RNA, Viral/genetics , Recombinases , Reproducibility of Results , SARS-CoV-2/genetics , Sensitivity and Specificity
8.
J Clin Virol ; 162: 105422, 2023 05.
Article in English | MEDLINE | ID: covidwho-2254123

ABSTRACT

BACKGROUND: The COVID-19 pandemic led to severe health systems collapse, as well as logistics and supply delivery shortages across sectors. Delivery of PCR related healthcare supplies continue to be hindered. There is the need for a rapid and accessible SARS-CoV-2 molecular detection method in low resource settings. OBJECTIVES: To validate a novel isothermal amplification method for rapid detection of SARS-CoV-2 across seven sub-Sharan African countries. STUDY DESIGN: In this multi-country phase 2 diagnostic study, 3,231 clinical samples in seven African sites were tested with two reverse transcription Recombinase-Aided Amplification (RT-RAA) assays (based on SARS-CoV-2 Nucleocapsid (N) gene and RNA-dependent RNA polymerase (RdRP) gene). The test was performed in a mobile suitcase laboratory within 15 min. All results were compared to a real-time RT-PCR assay. Extraction kits based on silica gel or magnetic beads were applied. RESULTS: Four sites demonstrated good to excellent agreement, while three sites showed fair to moderate results. The RdRP gene assay exhibited an overall PPV of 0.92 and a NPV of 0.88. The N gene assay exhibited an overall PPV of 0.93 and a NPV 0.88. The sensitivity of both RT-RAA assays varied depending on the sample Ct values. When comparing sensitivity between sites, values differed considerably. For high viral load samples, the RT-RAA assay sensitivity ranges were between 60.5 and 100% (RdRP assay) and 25 and 98.6 (N assay). CONCLUSION: Overall, the RdRP based RT-RAA test showed the best assay accuracy. This study highlights the challenges of implementing rapid molecular assays in field conditions. Factors that are important for successful deployment across countries include the implementation of standardized operation procedures, in-person continuous training for staff, and enhanced quality control measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Pandemics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction , Africa South of the Sahara , RNA, Viral/genetics
9.
Biosens Bioelectron ; 219: 114816, 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2242673

ABSTRACT

Airborne transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the urgent need for aerosol monitoring of SARS-CoV-2 to prevent sporadic outbreaks of COVID-19. The inadequate sensitivity of conventional methods and the lack of an on-site detection system limited the practical SARS-CoV-2 monitoring of aerosols in public spaces. We have developed a novel SARS-CoV-2-in-aerosol monitoring system (SIAMs) which consists of multiple portable cyclone samplers for collecting aerosols from several venues and a sensitive "sample-to-answer" microsystem employing an integrated cartridge for the analysis of SARS-CoV-2 in aerosols (iCASA) near the sampling site. By seamlessly combining viral RNA extraction based on a chitosan-modified quartz filter and "in situ" tetra-primer recombinase polymerase amplification (tpRPA) into an integrated microfluidic cartridge, iCASA can provide an ultra-high sensitivity of 20 copies/mL, which is nearly one order of magnitude greater than that of the commercial kit, and a short turnaround time of 25 min. By testing various clinical samples of nasopharyngeal swabs, saliva, and exhaled breath condensates obtained from 23 COVID-19 patients, we demonstrate that the positive rate of our system was 3.3 times higher than those of the conventional method. Combining with multiple portable cyclone samplers, we detected 52.2% (12/23) of the aerosol samples, six times higher than that of the commercial kit, collected from the isolation wards of COVID-19 patients, demonstrating the excellent performance of our system for SARS-CoV-2-in-aerosol monitoring. We envision the broad application of our microsystem in aerosol monitoring for fighting the COVID-19 pandemic.

10.
Pharmacy Education ; 20(3):142.0, 2020.
Article in English | EMBASE | ID: covidwho-2237693

ABSTRACT

Background: COVID-19 is the current most prominent global health problem. Rapid and accurate diagnosis of disease is one of the most important factors in eliminating the spread of the virus;developing countries are currently facing many problems related to the high cost of PCR tests for COVID-19. Purpose(s): To develop a fast, accurate and low-cost method for making a PCR test for COVID-19. Method(s): The method was based on the use of the RPA (Recombinase Polymerase Amplification) method. By making a microfluidic device including restored (RPA) Mixture and immobilised probes designed for the RPA reaction to take place inside. The experiments were conducted on 20 clinical samples, and conducted at the Faculty of Pharmacy, Tanta University. Result(s): The results were identical in approximately 90% of the samples used and results were available after 30 minutes at normal room temperature. The results were read by measuring the level of the precipitate of the RPA reaction products resulting from the interaction of the reaction mixture with the Viral RNA. Conclusion(s): This method is considered one of the fastest ways to detect COVID19 infection and it is the least expensive and can be used in developing countries and as point-of-care testing.

11.
Front Microbiol ; 13: 1070831, 2022.
Article in English | MEDLINE | ID: covidwho-2237151

ABSTRACT

The coronavirus disease 2019 (COVID-19) caused by novel severe acute respiratory coronavirus 2 (SARS-CoV-2) has been rapidly spreading worldwide. Rapid and widespread testing is essential to promote early intervention and curb the ongoing COVID-19 pandemic. Current gold standard reverse transcription-polymerase chain reaction (RT-PCR) for detecting SARS-CoV-2 is restricted to professional laboratories and well-trained personnel, thus, limiting its widespread use in resource-limited conditions. To overcome these challenges, we developed a rapid and convenient assay using a versatile integrated tube for the rapid and visual detection of SARS-CoV-2. The reaction conditions of the method were optimized using SARS-CoV-2 RNA standards and the sensitivity and specificity were further determined. Finally, it was verified on clinical specimens. The assay was completed within 40 min, and the result was visible by the naked eye. The limits of detection (LODs) for the target ORF1ab and N genes were 50 copies/µl. No cross-reactivity was observed with the RNA standard samples of four respiratory viruses or clinical samples of common respiratory viral infections. Ninety SARS-CoV-2 positive and 30 SARS-CoV-2 negative patient specimens were analyzed. We compared these results to both prior and concurrent RT-PCR evaluations. As a result, the overall sensitivity and specificity for detection SARS-CoV-2 were 94.5 and 100.0%, respectively. Conclusion: The integrated tube assay has the potential to provide a simple, specific, sensitive, one-pot, and single-step assay for SARS-CoV-2.

12.
Trends Biotechnol ; 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2231283

ABSTRACT

The coupling of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas RNA-programmable nucleases with nucleic acid detection platforms has brought radical changes to the field of disease diagnosis. Recently, Sánchez et al. developed a simple, rapid, highly sensitive, precise, and in-field deployable point-of-care (POC) and point-of-need (PON) molecular disease detection tool that can be used in diverse agricultural applications.

13.
Microbiol Spectr ; 11(1): e0279622, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2213891

ABSTRACT

The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. The identification of specific dengue virus serotype 1 (DENV-1) to DENV-4 can help in understanding the transmission dynamics and spread of dengue disease. The four rapid low-resource serotype-specific dengue tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. Results are obtained directly from clinical sample matrices in 35 min, requiring only a heating block and pipettes for liquid handling. In addition, we demonstrate that the rapid sample preparation step inactivates DENV, improving laboratory safety. Human plasma and serum were spiked with DENV, and DENV was detected with analytical sensitivities of 333 to 22,500 median tissue culture infectious doses (TCID50)/mL. The analytical sensitivities in blood were 94,000 to 333,000 TCID50/mL. Analytical specificity testing confirmed that each test could detect multiple serotype-specific strains but did not respond to strains of other serotypes, closely related flaviviruses, or chikungunya virus. Clinical testing on 80 human serum samples demonstrated test specificities of between 94 and 100%, with a DENV-2 test sensitivity of 100%, detecting down to 0.004 PFU/µL, similar to the sensitivity of the PCR test; the other DENV tests detected down to 0.03 to 10.9 PFU/µL. Collectively, our data suggest that some of our rapid dengue serotyping tests provide a potential alternative to conventional labor-intensive RT-quantitative PCR (RT-qPCR) detection, which requires expensive thermal cycling instrumentation, technical expertise, and prolonged testing times. Our tests provide performance and speed without compromising specificity in human plasma and serum and could become promising tools for the detection of high DENV loads in resource-limited settings. IMPORTANCE The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. This study describes the evaluation of four rapid low-resource serotype-specific dengue tests for the detection of specific DENV serotypes in clinical sample matrices. The tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. These tests have several advantages compared to RT-qPCR detection, such as a simple workflow, rapid sample processing and turnaround times (35 min from sample preparation to detection), minimal equipment needs, and improved laboratory safety through the inactivation of the virus during the sample preparation step. The low-resource formats of these rapid dengue serotyping tests have the potential to support effective dengue disease surveillance and enhance the diagnostic testing capacity in resource-limited countries with both endemic dengue and intense coronavirus disease 2019 (COVID-19) transmission.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue/diagnosis , Dengue Virus/classification , Dengue Virus/isolation & purification , Rapid Diagnostic Tests , Recombinases , Sensitivity and Specificity , Serogroup
14.
COVID-19: Biomedical Perspectives ; 50:1-26, 2022.
Article in English | Web of Science | ID: covidwho-2167924
15.
Front Microbiol ; 13: 1067694, 2022.
Article in English | MEDLINE | ID: covidwho-2199023

ABSTRACT

Murine hepatitis virus (MHV) is a highly infectious murine coronavirus that has a high potential for causing harm to host animals. This study aimed to develop a real-time reverse transcription recombinase polymerase amplification (RT-RPA) method for rapid detection of MHV in laboratory mice. Methods: Specific primers and probes for RT-RPA assay were designed targeting the conserved region in the M gene of the MHV reference strain (accession no. FJ6647223) according to the TwistDx manual instructions. The specificity, sensitivity, and reproducibility of the RT-RPA method were evaluated and compared with those of the standard RT-qPCR method. The clinical applicability of this assay was evaluated using 68 field samples. Results: Amplification using the newly developed RT-RPA assay was completed within 20 min at 37°C, while that using the RT-qPCR method required nearly 60 min. The RT-RPA method exhibited an obvious time-saving advantage. Both RT-RPA and RT-PCR methods had the same limit of detection, which was 4.45 × 101 copies/µL. The specificity was indicated by a lack of cross-reaction with MHV, pneumonia virus of mice, Sendai virus, hantavirus, minute virus of mice, and reovirus type III. The MHV detection rate of RT-RPA assays was 13.63% (9/66) and RT-qPCR assays was 15.15% (10/66). Cohen's "kappa" (κ) analysis results exhibited a very good agreement between two methods with the value of κ ≥ 0.750(since κ = 0.939) and p < 0.0005 (since p = 0.000). Conclusion: The RT-RPA assay offers an alternative tool for simple, rapid, and reliable detection of MHV in laboratory mice and has significant potential for application in laboratories.

16.
Front Cell Infect Microbiol ; 12: 1019071, 2022.
Article in English | MEDLINE | ID: covidwho-2162980

ABSTRACT

After the outbreak of SARS-CoV-2, nucleic acid testing quickly entered people's lives. In addition to the polymerase chain reaction (PCR) which was commonly used in nucleic acid testing, isothermal amplification methods were also important nucleic acid testing methods. Among several common isothermal amplification methods like displaced amplification, rolling circle amplification, and so on, recombinase polymerase amplification (RPA) was recently paid more attention to. It had the advantages like a simple operation, fast amplification speed, and reaction at 37-42°C, et al. So it was very suitable for field detection. However, there were still some disadvantages to RPA. Herein, our review mainly summarized the principle, advantages, and disadvantages of RPA. The specific applications of RPA in bacterial detection, fungi detection, virus detection, parasite detection, drug resistance gene detection, genetically modified food detection, and SARS-CoV-2 detection were also described. It was hoped that the latest research progress on RPA could be better delivered to the readers who were interested in RPA.


Subject(s)
COVID-19 , Nucleic Acid Amplification Techniques , Humans , COVID-19/diagnosis , Nucleotidyltransferases/genetics , Recombinases/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
17.
Pathogens ; 11(11)2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2090299

ABSTRACT

This study established a portable and ultrasensitive detection method based on recombinase polymerase amplification (RPA) combined with high-sensitivity multilayer quantum dot (MQD)-based immunochromatographic assay (ICA) to detect the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The RPA-MQD-based ICA method is reported for the first time and has the following advantages: (i) RPA is free from the constraints of instruments and can be promoted in point-of-care testing (POCT) scenarios, (ii) fluorescence ICA enhances the portability of detection operation so that the entire operation time is controlled within 1 h, and (iii) compared with common colorimetric-based RPA-ICA, the proposed assay used MQD to provide strong and quantifiable fluorescence signal, thus enhancing the detection sensitivity. With this strategy, the proposed RPA-MQD-based ICA can amplify and detect the SARS-CoV-2 nucleic acid on-site with a sensitivity of 2 copies/reaction, which is comparable to the sensitivity of commercial reverse transcription quantitative polymerase chain reaction (RT-qPCR) kits. Moreover, the designed primers did not cross-react with other common respiratory viruses, including adenovirus, influenza virus A, and influenza virus B, suggesting high specificity. Thus, the established portable method can sensitively detect SARS-CoV-2 nucleic acid without relying on equipment, having good application prospects in SARS-CoV-2 detection scenarios under non-lab conditions.

18.
BMC Vet Res ; 18(1): 369, 2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-2064800

ABSTRACT

BACKGROUND: Swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute vomiting and diarrhea in piglets, leading to significant financial losses for the pig industry. Recombinase polymerase amplification (RPA) is a rapid nucleic acid amplification technology used under constant temperature conditions. The study established a real-time reverse transcription (RT)-RPA assay for early diagnosis of SADS-CoV.  RESULTS: The detection limit of the real-time RT-RPA was 74 copies/µL of SADS-CoV genomic standard recombinant plasmid in 95% of cases. The assay was performed in less than 30 min and no cross-reactions were observed with eight other common viruses that affect swine, including classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), pseudo rabies virus (PRV), swine influenza virus (SIV), seneca valley virus (SVA), transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV). The coefficient of variation (C.V.) values of the two standards dilutions and three positive clinical sample ranged from 2.95% to 4.71%. A total of 72 clinical fecal samples from swine with diarrheal symptoms were analyzed with the developed RT-RPA and quantitative RT-PCR. There was 98.61% agreement between the RT-RPA and the quantitative real-time PCR results. CONCLUSIONS: These results indicated that the developed RT-RPA assay had good specificity, sensitivity, stability and repeatability. The study successfully established a broadly reactive RT-RPA assay for SADS-CoV detection.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Nucleic Acids , Swine Diseases , Alphacoronavirus/genetics , Animals , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Diarrhea/diagnosis , Diarrhea/veterinary , Real-Time Polymerase Chain Reaction/veterinary , Recombinases , Sensitivity and Specificity , Swine , Swine Diseases/diagnosis
20.
Talanta ; 252: 123835, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-1984108

ABSTRACT

In this paper we present a new method for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), targeting a specific region "N gene." Under isothermal reaction conditions, we integrated ligation (Lig; high selectivity) and recombinase polymerase amplification (RPA; high sensitivity) processes, obtaining a robust method of detection. For point-of-care testing, we incorporated our laboratory-produced pyrophosphate ion (PPi)-sensing probe (PK-probe) for colorimetric analysis of the reaction. The total detection system was efficient and effective at diagnosing this RNA virus-mediated disease rapidly (30 min). In a full-genome SARS-CoV-2 study, our PK-probe/Lig-RPA system functioned with a limit of detection of 1160 copies/ml, with a single-mismatch level of selectively, and it was highly selective even in the presence of bacterial genomes commonly found in the human mouth and nose. This robust, straightforward, selective, efficient, and ultrasensitive colorimetric detection method, with potential for point-of-care analysis, should also be effective in detecting a diverse range of other RNA-based diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Recombinases , Colorimetry , Nucleic Acid Amplification Techniques/methods , COVID-19/diagnosis , Sensitivity and Specificity , RNA, Viral
SELECTION OF CITATIONS
SEARCH DETAIL